
Cornelis A. Van Eysden and John E. Sader

Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia

(Received 17 September 2008; accepted 5 October 2008; published online 19 November 2008)

[DOI: 10.1063/1.3009958]

Formulas presented for the thermal noise spectra in Eqs. (17a), (17b), and (31) should read

\[
[w(x)|\omega|^2]_t = \frac{3\pi k_BT \rho b}{2k} \frac{C_1^4}{\rho_h \omega_{\text{vac},1}} \sum_{n=1}^{\infty} \frac{\omega \Gamma'(\omega,n)}{|C_n^4 - B_n^4(\omega)|^2} \phi_n^2(x), \quad (17a)
\]

\[
\left[\frac{\partial w(x)|\omega|}{\partial x}\right]_t^2 = \frac{3\pi k_BT \rho b}{2k} \frac{C_1^4}{\rho_h \omega_{\text{vac},1}} \sum_{n=1}^{\infty} \frac{\omega \Gamma'(\omega,n)}{|C_n^4 - B_n^4(\omega)|^2} \left(\frac{d\phi_n(x)}{dx}\right)^2, \quad (17b)
\]

\[
[\Phi(x)|\omega|^2]_t = \frac{6\pi k_BT \rho b}{k_\Phi} \frac{D_1^2}{\rho_h \omega_{\text{vac},1}} \sum_{n=1}^{\infty} \frac{\omega \Gamma'(\omega,n)}{|D_n^2 - A_n^2(\omega)|^2} \gamma_n^2(x). \quad (31)
\]

The correction to Eq. (17b) modifies the numerical results in Figs. 2 and 3.

These corrections do not affect the discussion and conclusions, and all other results are unchanged.

Electronic mail: jsader@unimelb.edu.au.

FIG. 2. Normalized thermal noise spectrum (slope) \(H = |w'(x)|\omega|^{2}k_{B}w_{\text{vac},1}/(k_{B}T)\), Eq. (17b), of the flexural modes in gas. The ‘ \(t\) refers to the derivative with respect to x. Results given for \(Re=10, \bar{T} = 0.01\). Normalized mode numbers \(\kappa = 0, 0.125, 0.25, \) and 0.5 corresponding to \(L/b = \infty, 15, 7.5,\) and 3.75, respectively. Solid line corresponds to \(\kappa = 0\) result and is identical to Ref. 3. (a) Fundamental mode and (b) first six modes.
FIG. 3. Normalized thermal noise spectrum (slope) $H = |w'(x)|^2 k \omega_{vac,1}/(k_B T)$, Eq. (17b), of the flexural modes in liquid. The $'$ refers to the derivative with respect to x. Results given for $Re=100$, $\bar{T}=10$. Normalized mode numbers $\bar{x}=0$, 0.125, 0.25, and 0.5 corresponding to $L/b=x=15$, 7.5, and 3.75, respectively. Solid line corresponds to $\bar{x}=0$ result and is identical to Ref. 3. (a) Fundamental mode and (b) first six modes.